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ABSTRACT

This study considers the self-consistent modification of the trapping

dynamics of a low density cold electron beam due to the external application

of a DC electric field. For DC fields smaller than the peak amplitude of the

saturated beam-plasma instability, the beam energy remains claImped while the

wave amplitude grows secularly. Large travelling potential wells appear and

create strongly focused charge clumps. By considering the role of wave dis-

sipation an exact dynamic BGK (Bernstein-Greene-Kruskal) equilibrium is

found analytically. It consists of a singular charge clump which propagates

through the medium at constant velocity even though a DC field is present.

The numerical study of the basic equations shows that the system evolves

asymptotically to this singular state. A variety of experimentally relevant

phenomena associated with the trapping dynamics is investigated, including

the stability of the dynamic nonlinear equilibrium to sideband growth.
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I. Introduction

The trapping of charged particles within the travelling potential wells of

collective plasma oscillations is one of the more significant strong nonlineari-

ties encountered in plasmas. Particle trapping is known, both theoretically
1'2

and experimentally , to alter the linear collisionless damping (Landau damping)

of collective modes supported by plasmas, and it is one of the dominant mechan-

isms that limits the growth of velocity-space instabilities. The strong effects

produced by particle trapping are related to the formation of phase-space granu-

lations out of initially smooth contours. The phase-space granulation is par-

tially reversible, and under carefully selected conditions can lead to inter-

esting amplitude4'5 and phase5,6 oscillations which persist for relative long

times of experimental interest. The phase-space granulation can disappear

smoothly by the process of phase mixing while the charged particles remain

confined within the potential wells, as is characteristic of the time asymptotic

formation of steady Bernstein-Greene-Kruskal7 (BKG) modes. The granulation can

also disappear more abruptly if the trapped particles escape from the potential

wells, as may. occur due to the spontaneous growth of sideband waves, sudden

phase slippage due to finite dissipation , or the launching of other large

amplitude waves.
9

The present study is concerned with the dynamics of trapped particles and

the associated phase-space granulation in the presence of an externally applied

DC electric field. The motivation for investigating this dynamical system in

detail can be attributed to the finding in a previous theoretical study10 that

the momentum of a runaway beam can become clamped due to the excitation of modes

travelling in synchronism with the beam. That earlier study was in turn stimu-

lated by the experimental observation1 1 ' 12 of runaway energy clamping in the

Microtor Tokamak at the University of California, Los Angeles.
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As is expected, the beam clamping effect sets in when the amplitude of the

resonant wave becomes larger thsn the external DC electric field. The earlier

calculation of this effect has been accomplished by means of a spatially averaged

formalism based on the exact conservation laws for energy and momentum, but with

the restrictive implicit assumption that the phase-space granulation is instantan-

eusly smeared out, i.e., the runaway beam acquires an irreversible thermal spread.

Of course, In reality the trapped particle dynamics is partially reversible.

Therefore, it is of interest to ellucidate the underlying single particle dynamics

accompanying the clamping process, to validate the existence of clamping indepen-

dently of the spatially averaged formalism, and to establish the limitations of

.the latter. In addition, there are various associated effects which are of

interest for both basic and applied reasons. A preliminary study of some of these

effects has been previously discussed13'14 by this author.

To isolate the principal effects produced by an external DC electric field

Eo, we consider the cleanest environment for trapped particle dynamics, i.e.,

the low density cold beam problem in which the background component supporting

the waves remis strictly linear. In practice this situation can be realized

by having a cold background plasma with heavy ions or simply replacing the cold

plasma by a slow wave structure, as is commonly done in travelling wave tube CWT

devices.8 The cold plasma assumption can be net by supplying sufficient neutral

gas in order to compensate for the heating produced by the waves and the intrinsic

ohmic heating associated with E0.

It is well known,'1 5 1 7 that in the absence of the DC electric field the

weak cold beam amplifies a narrow spectrum of noise wa*es supported by the

background structure. After several o-foldings the noise evolves into a nearly

monochromatic signal (single mode) whose wth U Softed by the abrupt trapping
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of the beam electrons within its potential troughs. The application of a DC

electric field to this system is found to produce a secular growth in the wave

amplitude without a noticeable increase in the beam momentum, i.e., the external

momentum push is transferred to the wave while the bea remains clamped. This

result is obtained in the present study by following the self-consistent orbits

of the trapped particles in a digital computer, thus confirming the existence of

10
beam clamping predicted by the earlier spatially averaged analysis. However,

additional features associated with the trapping dynamics are uncovered. One

of them is the expected appearance of trapping oscillations of increasing fre-

quency which modulate the secular growth in the wave amplitude. Another feature

is the generation of secondary low density runaway beams which arise from the

spillage of the primary beam particles out of the potential wells.

In the absence of wave damping the secular increase in the wave amplitude

produced by the DC electric field is unbounded. Large potential wells are gen-

erated and the trapped particles evolve into phase-space clumps of ever decreas-

ing dimensions. When a wave dissipation channel exists, one obtains analytically

an exact dynamic BGK equilibrium consisting of a singular charge clump which

is being pushed by Eo , but whose momentum remains constant. This unusual and

highly nonlinear state is found to be approached asymptotically by the time

dependent computer solution of the problem.

The application of the DC electric field permits the detailed manipulation

of the position of the trapped particles relative to the bottom of the potential

wells of the wave. By changing the direction of the DC field, one can either

make the wave grow or damp. By means of this phase-space reconstruction, it is

possible to reverse the drastic disappearance of the trapped particle oscilla-

tions associated with finite wave dissipation.



The enhanced growth in the wave amplitude produced by Eo can be used to

improve the efficiency of a TWr, as was investigated nearly twenty years ago

by Hess. s A similar application may be found for the collective free elect-

ron lasers under present consideration1 9 , where particle trapping plays an

important role. The results presented here illuminate some of the fundamental

processes which underly these practical developments, and define specific exper-

iments amenable to investigation in the laboratory.

In Section II of the paper some of the basic properties of trapping behav-

ior in the presence of a DC electric field are examined analytically. The

weak cold beam formalism is examined in Section III. The bean clamping effect

is discussed in Section IV, and the dynamic BGK equilibrium is explained in

Section V. The stability of the singular clump equilibrium to sideband growth

is investigated in Section VI. Concluding remarks are presented in Section VII.
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II. Modified Trapping Behavior

Before considering the self-consistent evolution of the wave amplitude

and phase together with the trapped particle dynamics in the presence of an

external DC electric field, it is useful to develop a simple description of

the lowest order effects produced by the DC field on particles which are trap-

ped in an electrostatic wave of fixed amplitude and phase velocity. In this

case, the equation of motion for electrons of charge -e, and mass m, in the

wave frame moving with speed w/k relative to the laboratory is

,'l "X = -AAm1 + e Eo
cit-

where A is the wave amplitude, k the wavenumber, and w the frequency.

It is evident from Eq (1) that the particles move in a distorted potential

well whose potential energy function U is

U -(e/~I~%~)C ./)~ ~ *AO~ (2)

The spatial behavior of the corresponding potential well is exhibited in Fig. 1

for the values Eo /A a 0.2, 0.S, 0.9, over the interval-w4cx< r. It is seen

that particle trapping ceases to exist when Eo!A, since only a single turning

point is found for the potential. This trapping threshold is a useful comparison

standard for the studies of Sec III, where it is shown that this threshold can

be exceeded by a factor of 2 when the self-consistent amplitude and phase changes

are considered.

For E0 0, the bottom of the potential well is shifted from x = 0 to a location

xs given by
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and the corresponding bounce time tb is

it

t (/6) ( 4~/r)
instead of the usual elliptic integral expression. In Eq (4), mb(eAk/m) I1/ 2 is

the bounce frequency for E.=O, Uo=U~twO)/CeA/k) is the scaled energy of the

particle, E=kx, and CI. C2 refer to the turning points, which are not symmetric.

The lowest order correction to the bounce frequency of particles bouncing

near the bottom of the distorted well can be extracted through the Bogoliuvov

procedure 2 0 applied to the equation

i nE q Ar o (5)a.ct

where C -kx , 9'y+&s5 and T-rbt. For small displacements Iyl<<l, Eq (1) can be

approximated by

(6)

Taking the solution to be of the form

and eliminating the secular behavior in lowest other leads to
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A. 0,. E. 0v).

(L O (8)

and

T . (9)StEIA(~o~ ~eAA

L0= (COI& N)
c.t

which results in the modified bounce frequency b

for a particle of initial displacement x0 . It is seen explicitly from Eq (10)

that the application of the DC electric field weakens the restoring force pro-

vided by the wave potential, and furthermore that bouncing ceases to exist as

E0 approaches A.

The distortion of the well produced by EoOO gives rise to the detrapping

of some particles which for Eo=O would remain confined within the wave troughs.

The time evolution of the orbits of these detrapped particles can be obtained

by solving Eq (1) in a perturbative manner, i.e., taking the lowest order orbit

0 to be

The scaled equation for the first order velocity becomes

A
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(12)

whose exact solution can be expressed in the ters of the Si (sine) and Ci

(cosine) int.eals, i.e.,

* - S"~ t~cf~.- L1.V(11 C" so

where,

(14)

21
The asymptotic behavior sets in for Z>4 and the leading expansions are

thus indicating that the detrapped particles become runaways which exhibit

, decreasing oscillations with a frequency wR=wb(Eo/2A) 1 / 2 . (ekE o/2m) 1/ 2 . The

not effect of the wasve potential on the runaway electrons created by the d.-

trapping process is to modify the free-fall velocity by an amount 6v given by

-!_



-10-

over a characteristic time AtilO/w,1 .
The displacement of the bottom of the effective potential given by Eq (3)

plays a major role in the time evolution of the wave amplitude. Essentially,
the forward push provided by B overcomes the particle recoil associated with

momentum transfer to the wave. Hence, a particle remains in synchronism with

the wave and causes a secular increase in its amplitude, as is discussed in

Sec III. Therefore, an additional consequence of E.00 is that the depth of

the trapping well increases in time if Bo is less than the threshold value for

the destruction of trapping (i.e., E <A to lowest order). An exactly soluble

simplified model of particle trapping in this environment is described by the

equation

7''
(17)

where a measures the rate of increase of the wave amplitude. Defining the

auxiliary variables

transforms Bq (17) into
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which Is the inhoDiganoou, Airy equation whohe olutton for a pu ticle Initially

trapped at the bottom of the potential vo11 (i.e., z - dz/dn * o'at t - o) is

given by

whete Ai, Bi, and Gi are the standard Airy functions. The constants a and b

are

(21)

where the prime denotes a derivative with respect to the argument and all

functions are evaluated at n(0) = (wb/I)2/3 .

In the asymptotic limit mto> Eq (20) implies that the particle position

is given by

In Eq (22) Y is a phase angle determined by the ratio of a to b, and F is the

2/3corresponding amplitude, which is strictly a function of (YO/)
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It is seen from Eq (22) that the trapped particles execute rapid oscillations

whose amplitude is proportional to the displacement of the bottom of the well pro-

duced by Eo (i.e., Eq (3)). These oscillations decrease in time due to the com-

pression produced by the ever increasing potential well. It is this compression

which is responsible for the formation of the singular charge clumps associated

with the dynamic BGK equilibrium described in Sec V. It should be noted that

although Eq (22) applies exactly to a linearly increasing wave amplitude, similar

results are obtained for other time dependences, and can be calculated asymptoti-

cally by means of the well known WKS analysis.

"ia
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III. Weak Cold Bess Formalism

Consider a fast electron.bem of initial speed vo whose density nb and

thermal sprad aresufficiently small to meet the weak cold bea criteria. 16

The beam is assmed to propagate through a medium (a cold plasma of density no

or an equivalent slow wave structure) whose behavior remains strictly linear, so

that this conttibution to the problem can be described analytically by means

of a slowly varying dielectric eok,*(t)]. Since in the present study one is

interested in the role played by the dynamics of the trapped particles, the

beam is disctresied into N charge sheets whose individual orbits xj (t) are

followed in a digital computer self-consistently with the evolution of the waves.

This procedure is to be contrasted with the analytic description of the beam

behavior used in the sptially averaged formalism.

Defining the scaled position of particle j in a frame moving with the initial

velocity of the beam by g F(t)=ko[x (t)-vot], where k is the wavenumber of the

fastest growing linearly unstable wave, yields the equation of motion

(23)

where the scaled quantities are

t .i

(24)

...... IIII
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The physical meaning of the quantities in Eq (24) is the following. - is the

complex amplitude of a wave having wavenumber k, which in the absence of the beam

has a laboratory frequency wkw, where w is the electron plasma frequency

of the background medium. Ak is the wave amplitude scaled to the saturation level

ETmQ2/eko due to beam trapping by the fastest growing wave ko , when EoO. A is

essentially the growth rate of the linear beam-plasma instability, and T is the

appropriately normalized time variable. ak is the Doppler shifted frequency of

mode k in the frame moving with speed v o. w0 refers to the frequency of mode

ko in the absence of the beam. Finally, er is the real part of the dielectric,

i.e., C¢=r +iCi, and (e/aw) ° is the derivative evaluated at kikopwnt. By

analogy, (ar/8)k refers to the same quantity evaluated at k and 0.

The self-consistent time evolution of Ak is determined from PoissOn's

equation, which in the slow time scale approximation (fl<w p) takes the form

i"t
(2S)

in which

Physically, rk represents the weak dissipation acting on mode k. Its origin

is left unspecified in the present work, but can be conceptually associated

with background plasma heating, wall heating, radiation leakage, etc.



The principal dynamical effects associated with the presence of the external

DC electric field can be understood from the exact conservation relations derivable

from Hqs (23) and (25), namely

'AL
at 1(27)

and

= e( i)-~'4l~ 4 '(28)
where, Re (dwk) refers to the real part of the complex frequency shift defined

by

Equation (27) is the conservation law for the total momentum of the system,

which is composed of the beam momentum

(30)

and the wave mmentu
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t (31)

The total momentum can be altered (increased or decreased) by a nonzero C, and

is destroyed whenever there exists a wave dissipation channel (i.e., rkIO).

Equation (28) represents the conservation of energy principle in the

frame moving with speed v° relative to the lab. It states that the total energy,

composed of the mechanical beam energy

(32)

and the wave energy

(33)

is altered by the work done on the beam pariicles bye, and is dissipated when

rk0o.

For rk=O, the conservation laws take the simple form

.1.

1) (34)

IA,

WhenE-O, Eq (34) is satisfied by balancing the growth of the nearlymano-

chromatic wave with a corresponding decrease in the beam momentum, i.e., the

beam recoils. As the beam recoils, its kinetic energy increases in the frame

moving with speed vo relative to the lab, thus Eq (35) is satisfied by the appear-
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ance of a self-consistent real frequency shift of the single mode. The simultan-

eous constraints imposed by Fqs (34) and (35) result in the trapping of the beam

particles and the corresponding saturation in the growth of the single mode.

For&O, it is evident from Eqs (34) and (35) that a steady state does not

exist. Both, the total momentum and the total energy of the system must increase

secularly in time due to the external push. There are two conceptually different

states capable of satisfying Eqs (34) and (35). One of them is the pure

runaway regime, in which the external push provided by the DC field gives rise

to an unbounded growth in beam momentum, i.e., dPb/dtB. The other state is the

more sAtie beam clamping regime, in which the beam momentum remains essentially

constant while the wave amplitude increases secularly in time, i.e., dPw/dtI

Of course, one also encounters an intermediate state in which only a small

fraction of the beam remains clamped, thus resulting in a simultaneous increase

in mechanical and wave momentum.

The attalnment of a given state, beam or wave runaway, is determined by the

strength of the DC electric field. Tf F0o>>F.T, then the force produced by the

wave cxr,,cancel the external push, consequently the beam runaway regime is

triggered. However, if Eio<. ,, then the push of the external field can be reduced

by the wave electric field. As is discussed in Sec 11, the I: field shifts the

position of the trapped particles relative to the bottom of the well, hence the

particles continue to drive the wave tnstable. Another way of visualizing this

effect is to say that the IC field offsets the beam recoil associated with the

saturation process for 1E0=0. For F o M:.r it is expected thatt the intermedi:te

regime should set in.

.. . .. ......... . .
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IV. Clamping Behavior

To investigate the dynamics of beam clamping, Eqs (23) and (25) are solved

numerically for a collection of discretized beam particles, typically in the

range N300-500. At first we consider the undamped (rk-o) single mode problem

in 0hich the linearly fastest growing mode becomes dominant and traps the beam

electrons.

In Fig. 2, the smaller curve, labelled Eo 0, exhibits the time evolution

of the amplitude of the single mode when there is no DC electric field present.

The characteristic long-lived amplitude oscillations due to the bouncing motion of

the trapped particles are evident. The secularly growing solid curve in Fig. 2

is the result obtained by turning on a DC field of strength Eo=O.SET at the time

the wave reaches the first peak, i.e., at the saturation time. As predicted by

the spatially averaged formalism and required by the conservation laws, the wave

exhibits unbounded growth (wave runaway) while the momentum of the beam particles

remains clamped (i.e., it does not increase). The dashed curve in Fig. 2 repre-

sents an approximate prediction that would be made by the spatially averaged

formalism, i.e.,

E(36)

where, T O refers to the turn-on time. Of course, the more sophisticated prediction

of the spatially averaged theory would require the simultaneous solution of 3

algebraic equations, as is done in Ref. 10. Nevertheless, the simple prediction

of Eq (30) gives a good account of the average secular growth induced by the DC

field. However, Eq (36) can not reproduce the oscillations that accompany the

secular growth. These oscillations are associated with the bouncing motion of

the trapped particles in a potential well which grows in time, as described by
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the analytic solution [Eqs (20) and (22)] of the model discussed in Sec II. As

expected, Fig. 2 shows that the frequency of the amplitude oscillations increases,

and their depth disappears.

Figure 3 displays the phase-space patterns at T -35.0 for the two cases shown

in Fig. 2. Note that the velocity scales are different for the two cases, while

the spatial scales are the same. In Fig. 3 the solid curve superimposed on the

phase-space pattern is the instantaneous spatial dependence of the force produced

by the wave. The major difference between the two cases is that for EOf0, the

trapped particles are smeared out over a full wavelength, whereas for E= O.5ET

the particles are focused and exhibit a spiraling motion of ever decreasing

spatial extent. It should be stressed that the average momentum of these particles

does not increase even though the DC field is acting on them. In addition, the

phase-space for o0 O.SET shows the existence of a secondary population of run-

aways which consists of less than 10% of the original beam particles.

An element of potential weakness in the spatially averaged theory of clamping

is the need to specify the spatially averaged distribution function <f> of the

beam, as it interacts with the growing waves. The simplest mathematical choice

is used in that formalism. It consists simply of a Lorentzian whose parameters

change self-consistently with the conservation laws. The reason why the spatially

averaged formalism is so successful in predicting the clamping behavior in spite

of this difficulty is that the actual <f> obtained by following the exact particle

orbits has the essential qualitative features of the Lorentzian beam, as can be

seen in Fig. 4. It is observed in this figure that the majority of the particles

form a clamped beam that has a finite thermal spread which increases slowly in

time. Figure 4 also shows a feature which is completely missed by the spatially

averaged theory, namely, a small secondary runaway beam which can not be stopped

by the main wave. The secondary beam can interact with other modes having faster
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phase velocities and may divide itself into a clamped component and yet another

secondary beam. Therefore, a percolation process can be established in phase-

space that produces a multiple beam distribution function of the type observed

in atoroidal strong turbulence experiment. 2 2

The enhanced damping effect produced by reversing the direction of the DC

field is shown in Fig 5a). In here, Eo=-0.$ET, hence the beam is decelerated

out of resonance with the wave, i.e., the wave switches from the unstable slow

beam root to the damped fast component, as is described by the spatially averaged

theory. The originally trapped particles envolve into a decelerating' beam Whose

phase-space structure is displayed in Fig 5b) for T=3S.O.

The time development of the pure beam runaway regime is exhibited in Fig.

=4.0ET; the E =0 is included for comparison. It is seen that the DC6a o .E~ E

field initially enhances the wave amplitude above the normal saturation level

due to the favorable relative displacement of the bottom of the potential well

described previously. However, in this case the push given by the DC field is

too strong and cannot be compensated by the enhancement in the wave amplitude.

Accordingly, the trapped particles are pushed out of the wave troughs and become

runaway electrons whose phase-space structure is shown in Fig 6b). The transition

from trapped particles to runaways encountered in this problem is a classical

analog of the process of ionizing an atom.

The clamping behavior exhibited in Fig. 2 has been obtained by turning on

the DC field at the time of saturation for the single mode. Therefore, it is of

interest to investigate if the attainment of this state depends crucially on this

particular choice of timing. The result of such an investigation is shown in

Fig. 7, where it is seen that the clamping state characterized by the secular

increase in wave amplitude is attained over a wide choice of initial timing. The

timing window sampled in Fig. 7 ranges from the pre-trapping stage (1) through

LMONSOON
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the damping (2-4) and rogrowth (4-&) cycles of the dynamics. The principal

effect associated with the choice of timing is the natural delay of the onset

of the secular growth stage, which is manifested in Fig. 7 as the relative

slippage of the wave amplitudes for the different cases (1-6).

The sensitivity of the clamping state to the amplitude of the applied DC

electric field can be quantified by means of the ratio of the number of runaway

electrons created NR to the total number of initial beam particles N. The depen-

dence of this ratio on Bo/ET is displayed in Fig. 8. It is seen that for EO/ET<I.2$

the runaways constitute less than 10% of the total population and their number is

not sensitive to the exact value of Eo . The reason for this behavior is that in

this regime a significant fraction of the runaways are created by the natural spil-

lage of the trapped particles out of the time dependent potential wells; a process

which occurs even when Eo-O. For E0>.2SETo one observes a dramatic increase in

the number of runaways, eventually attaining the 100% level at Eo=4 .OET. This

absolute upper limit on the destruction of trapping by a DC field is roughly a

factor of 2 larger than expected for a wave of fixed amplitude. The reason for

F this higher threshold is that the wave amplitude grows due to the application of

the DC field, hence the threshold discussed in Sec II (i.e., Eo=2E T) varies as a

function of time during the interaction. The net integrated result is essentially

the curve shown in Pig 7.

Since the clamped state is insensitive to the timing of the DC field and it

exists over a broad range of values E O4 .OET, it is then possible to modulate the

amplitude of the wave by applying DC pulses which are consistent with these limits.

An example of such amplitude control is demonstrated in Fig 11, where one applies

tao square pulses of magnitude IEotNO.SET, but having opposite polarity. It is

seen that the amplitude can be increased, held constant, and decreased. An impor-

tant point about such a control, which may have some practical application, is



-22-

that the response of the wave amplitude is essentially linear even though the

dynamics of the underlying system is strongly nonlinear.

In the clamping behavior previously discussed, it is explicitly assumed that

a single mode dominates the wave spectrum. In practice this situation can be re-

alized if the system evolves from an extremely low noise level, or if the spectrum

is initially enhanced by modulating the beam or launching a test wave of substan-

tial amplitude and with a wavenumber corresponding to the fastest growing linearly

unstable mode. The presence of many modes in the beam instability produces a

natural smearing of the phase-space granulation associated with particle trapping.

This effect can be viewed dynamically in terms of a non-stationary potential well

(due to the sum over all modes) which gives rise to the stochastic trapping and

detrapping of the resonant particles, or alternatively as arising due to global

phase mixing because particles trapped in different troughs bounce with different

phases and bounce frequencies. In either interpretation the net result is that

the cold beam develops a thermal spread rather rapidly. Therefore, it is of interest

to check if the secular wave growth triggered by the application of the DC electric

field occurs in the more complicated multi-wave environment.

The role played by modes having wavelengths longer than that of the fastest

growing mode (i.e., k <k0) is shown in Fig 10. This figure exhibits the time

evolution of the wave amplitudes of a system containing 7 modes. The spectrum con-

sists of the fastest growing mode k0 , and 6 lower modes having a mode spacing

Ak/koO0 .07, and with a beam density corresponding to a/wp=0.1. In Fig lOa) the

behavior for E 0 O is shown. It is observed that the main mode is still dominant

throughout the entire time evolution. However, the trapped particle amplitude

oscillations are not well defined. The reason for this behavior is seen in the

phase-space shown in Fig. 10 b), where a high degree of phase mixing is observed.
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The effect produced by the application of a DC electric field (EoO.SET) to this

system is shown in Fig. Ila). It is found that the characteristic secular growth

in wave amplitude indeed occurs, and that clear trapping oscillations now become

evident. Note the difference in amplitude scales between Figs. lOa) and lla).

As expected from Fig. hla), the phase-space associated with the secular growth,

Fig. llb), shows heavily populated clumps and a negligible number of secondary

runaways, quite similar to the behavior obtained for the pure single mode case.

The effect produced by the inclusion of waves having wavelengths shorter than

that of the main mode (i.e., k>k0) is shown in Fig 12a). The spectrum in this

system contains the fastest growing mode k0 , and two upper and two lower sidebands

with mode spacing Ak/ko=0.08, and /w .p=0.1. The principal feature in this system

is that the main mode decays right after reaching saturation and triggers the

growth of an upper sideband which eventually dominates the spectrum. In this

case the characteristic trapping oscillations are absent, as is expected from the

corresponding phase-space shown in Fig 12b). The application of a DC electric

field (EoUO.7ET) to this system also produces a secular growth in the wave amplitude,

as shown in Figure 13a). Again, note the change in scales between Figs 12a) and

13a). The degree of clump formation in this case is much less than in the pure

single mode problem and the number of secondary runaways is significantly increased

as seen in the phase-space of Fig 13b). The reason for this behavior is that in

the zerv order system (E o= 0), particle trapping is destroyed by the sideband

growth.
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V. Dynamic BGK Equilibrium

It has been shown in the previous section that in the absence of dissipation

the wave amplitude exhibits unbounded growth for DC fields such that E o,4.OET .

Within the restrictions of the model a steady state cannot be attained. Therefore,

the clamped beam particles are compressed into singular charge clumps. However,

when a finite amount of wave dissipation is present, an interesting nonlinear

steady state can be found analytically. It consists of a trapped particle equili-

brium of the type associated with a BGK mode, but in which there is energy and

momentum being continuously circulated through the system.

The steady state flow of energy and momentum can be deduced from Eqs (27)

and (28) for the single mode problem, i.e.,

(37)

(38)

where r is the damping rate, W the real frequency shift and A the wave amplitude.

The steady state is obtained by balancing the dissipation of energy and momentum

due to the wave damping against the source of momentum and energy provided by

the DC field. The requirements are

,6. - ) (39)

These conditions atise from global properties of the wave-particle system and must

be consistent with the motion of the individual particles in order for the steadyJII
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state to be realizable. To check this consistency requirement, write the equa-

tion of motion for particle j in real form

AM. 0t A.Wtl (40)

from which it is seen that dPb/&=O if the particle position is given by E (t)=

O+PbT. In here e is a constant phase factor independent of the particle label

j (i.e., a singular charge clump is fomed), and must satisfy the force equili-

brium condition

Cr G 
(41)

which has a physical solution provided G/2A<l. This consistency requirement,

that(( /2 /
together with Eq (39), implies that(l r/2)I/2<1 for the dynamic DGK equilibrium

to exist.

It must then be verified that the choice of a singular clump indeed gives

rise to a constant wave amplitude and a constant frequency shift. This check

can be obtained by analyzing the real version of Eq (2S), namely

T

AAim
t1 1 (43)

The choice of a singular clump population transforms Eq (42) into
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C'&% (44)ct

which using the dynamical equilibrium condition of Eq (41), together with the

conservation constraints of Eq (39), results in

dT. (45)

thus showing that dA/dr-0, as required.

Similarly, Eq (43) is transformed into

W= .AWKS~/A (46)

which is explicitly time independent in view of Eq (45), and from which one obtains

the self-consistent frequency shift associated with the dynamic BGK equilibrium

= (47)

The choice of the negative sign in the square root of Eq (47) is determined by

the physical need to locate the clump within the confining trough of the wave

potential. The disregarded positive root corresponds to a potential hill instead

of a valley.

The nonlinear steady state analyzed in this section consists of a singular

charge clump which is located inside the potential trough of a constant amplitude

wave and propagates at constant speed even though an external DC electric field
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acts on it. This is an example of a nonlinear dynamical equilibriu in which

the trapped beam particles play the role of an intermediate agent which transfers

the external momentum push of the DC electric field to those physical mechanisms

responsible for the wave damping. The physics behind the continuous excitation

of the wave is that the constant position of the charge clump is displaced relative

to the bottom of the wave trough in the positive energy transfer phase of the

usual trapped particle energy transfer cycle, as is evident from Eq (44).

The singular charge clump associated with the dynamic BGK equilibrium can

be attained only in the limit r.o, T-'- (neglecting space charge limits, which

eventually become important). For finite values of r and T, the actual clump

has a finite spatial extent. The consequence of not having a perfect charge

singularity on the parameters of the exact dynamic BGK equilibrium can be

assessed by expressing the orbit of the j trapped particle as

+ C a A4 - (48)

where Co is the force free equilibrium position defined by cos& 4/2A, and

a is the finite excursion having frequency 0 and random phase 0.

Considering that a fraction a< of the original beam particles remain

clamped and a corresponding amount (I - a) runs away, as is always the case,

implies that the self-consistent frequency and amplitude are determined essen-

tially by

F~b (49)

(SO)

-MEL
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in which the small (high frequency) modulation due to the oscillatory orbits

of the runaways, given in Eq (13), is neglected.

Using the finite series expansion in terms of Bessel functions for the

expressions in Eqs (49) and (SO), and realizing that summing over j is equivalent

to averaging over the random phases leads to

rFAk= jC4~2 (1

WP, = I. (S2)

0 (53)

where J is the Bessel function of order 0 and the quantity f measures the

degree of focusing of the clump, e.g., as 1j-O, f".

Solving Eqs (51) and (52) leads to the modified parameters for the approx-

imate BGK equilibrium due to a finite size clump

%IL

F- /' (54)

-p . ) vCr I, (SS)

which reduce to Eqs (39) and (47) in the limit ful. From Eq (SS) one finds

the more restrictive condition for the existenie of the finite size IGK equili-

brium to be (r/2) 4. This condition should be used in conjunction with Fig 8

to delineate the parameter space ameanable to the formation of a dynamic BGK

equilibrium.
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To check on the existence of the dynamic BGK equilibrium, we solve Eqs (23)

and (25) as in Sec IV, but now proceed to include the effect of damping, i.e.,

FrO. Figure 14a) shows the time evolution of the wave amplitude for the case

r-o.02, Eo-l.0 ET . It is found now that the secular behavior, exemplified by Fig.

2, is stopped. The system approaches asymptotically a steady state whose amplitude

is slightly smaller than the prediction of Eq (39), i.e., (6/2r)1/2 N 4.2. Sim-

ultaneously with the approach to this steady state, one observes the formation

of a high density cluster of beam particles, a clump, whose velocity remains

essentially constant, as is characteristic of the dynamic BGK equilibrium, and

is exhibited in the phase-space plot of Fig 14b).

The formation of a highly coherent trapped particle state in the presence of

finite damping, as demonstrated in Fig. 14, may on first thought appear to contra-

dict the well documented fact that trapping can be destroyed due to the effect of

finite damping, as studied by Dimonte and Malmberg.
8 As shown by these authors,

the destruction of trapping is not due to the obvious dissipative decrease in wave

amplitude, but rather it is caused by a sudden nonlinear phase shift which pulls

the particles out of the wave troughs, thus causing a dramatic damping in the wave

amplitude. Figure 15 shows the existence of this sudden damping, for r = 0.075,

occuring just after the second trapped particle oscillation, T<20.0. The phase-

space structure corresponding to this damping is shown in Fig. 16a), where it is

evident that strong phase mixing has occurred. The effect produced by the applica-

tion of a DC electric field to the phase-space structure of Fig 16a) is exhibited

in the late time (T,30) portion of Fig 1S. The DC field causes the regrowth of

the wave and asymptotically it approaches a dynamic BGK equilibrium. The regrowth

of the wave is accomplished by the reorganization of the phase-space structure due

to the push provided by the DC field. The DC push positions the majority of the
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trapped particles in the correct phase for transferring energy to the wave, as

seen in the phase-space of Fig 16b). In the process of moving the trapped particles

to the favorable position for wave growth a secondary runaway population is created.

The attainment of a steady state due to finite wave dissipation in the presence

of many modes is also possible, as shown in Fig. 17a) for the parameters EoO4 .7E T ,

r-o.02. The system contains 6 lower modes (k* 0) in addition to the main mode, and

has a mode spacing Ak/k0 =0.07 with (1/wp=0.1, as in the case considered earlier in

Fig. 12. Together with the approach to an asymptotic constant wave amplitude, one

observes in the corresponding phase-space picture of Fig. 17b) that spatially focused

charge clumps appear, as expected from the dynamic DGK equilibrium analysis.

However, due to the presence of several non-resonant modes, a significant fraction

of secondary runaways is created. Since the runaways do not contribute to

driving the wave amplitude, it is found that the asymptotic wave amplitude attains

a level A=3.0 which is lower than the ideal pure single mode prediction of A=4.2.

From this difference it can be estimated through Eq (54) that the focusing parameter

has a value fO.56. This value, although lower than that for a perfect dynamic

BGK equilibrium (fal.0), is found to satisfy the necessary existence criterion

for the steady state, i.e., r#P2<f. A similar result is also obtained when

upper sidebands as well as lower sidebands are present. However, due to the

destruction of particle trapping produced by the upper sidebands, as seen in

Fig. 12, the degree of clumping is significantly reduced, i.e., the focusing

parameter attains a low value fmO.2.

IK
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VI. Stability of Clump Equilibrium

Several years ago considerable theoretical effort was devoted to the study

of the sideband instability associated with trapped particle BGK equilibria. The

motivating reason for the intensive theoretical activity was the experimental

observation of Wharton, et al. 23 that sideband signals were spontaneously excited

when a monochromatic large amplitude electron plasma wave was externally launched

in a collionless plasma. One of the more interesting models proposed to explain

the experimental results was advanced by Kruer, et al. 24 It consisted of the

ad-hoc assumption that the trapped particles were bunched into a singular clump

located exactly at the bottom of the potential well of the wave. The earliest

analysis of this model by Kruer, et al. showed that sideband waves were indeed

unstable; the physics behind the instability being essentially associated with

the linear dynamics of a spatially periodic cold beam. Although a computer

particle simulation2 5 of the problem by Kruer, et al. showed that instead of

a singular clump, a large hole was formed at the bottom of the well, the clump

model yielded predictions which were in rough agreement with the observed side-

band growth. The analysis of Kruer, et al. was subsequently corrected by Goldman

and Berk26 to include the important effect produced by the requirement of self-

consistency, i.e., a nonlinear frequency shift must always accompany the formation

of the charge clumps. The nonlinear frequency used by Goldman and Berk was taken

27from an early calculation by Bohm and Gross , and although it provides a logical

improvement upon the model of Kruer, et al., it is not the correct frequency

shift5'6 associated with a large amplitude electron plasma wave. These difficulties

simply stem from the fact that the clump model is not the correct dynamical descrip-

tion of the launched wave problem. Nevertheless, it is an interesting system

to investigate.



-32-

The dynamic BGK equilibrium discussed in Sec V has the singular clump nature

of the model postulated by Kruer, et al., but does not suffer from the lack of

self-consistency and dynamical origin. The wave amplitude, clump position, and

nonlinear frequency shfft are all analytically known. In addition, the formation

of the clump is dynamically possible due to the spatial compression provided by

the secular growth of the wave potential. Accordingly, the dynamic BGK equili-

brium is the natural system for calculating the stability of clump equilibria.

The stability analysis that determines the growth of small waves of amplitude

wavenumber k, and frequency w, can be performed in a manner analogous to the

calculation of Kruer, et al. The result is

(j (56)

* in which ; refers to the time asymptotic velocity of the wave (different from

0

V0), and ; is the bounce frequency in the presence of the DC electric field

given by Eq (10).

In general, the stability problem involves the solution of an infinite

determinant which represents the coupling of all the Floquet (Bloch) states

k+&k, as indicated in Eq (56). However, in the limit of small onb/no the low-

est order nontrivial coupling which is often investigated consists of retaining

only the A=0,2 terms. The simplified system consists of

act 1 (57)



-33-

where e(1)=t(kw),z(2)=e(k-2kow-2ko), and
0 0

The expansion of Eq (57) leads to the dispersion relation

~&i1 (59)

which has the characteristic structure of a parametric instability problem.

Taking into consideration that w-w p+8w, 1I <6wj p , and recalling the weak

cold beam scaling given in Eqs (24) and (26) reduces Eq (59) to

L ir) (zw -i L r = C(60)

in which the unknown complex frequency has been scaled to y=&w/0, and the k

dependence enters through

It should be mentioned that in arriving at Eq (60), the background plasma

has been taken to be cold, hence the scaling factor np(nb/2n0)

The factor W appearing in Eq (61) is the self-consistent nonlinear frequency

shift given by

k(2.rO~S a Ai (62)
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and the scaled bounce frequency is

The principal features of the dispersion relation, Eq (60), can be obtained

by considering the limit IW40, Wb>l. Physically, this regime corresponds to weak

damping and large potential wells, as is required for the formation of a dynamic

BGK equilibrium. Neglecting the explicit dependence on r and V in the left side

of Eq (60) yields

(64)

which shows that as IWJ-0 the regions of instability are centered around r "-

Considering each of these regions to be well separated from each other results

in

(65)

where rus± b . One can now define the useful scaled variable

= ( s 1')I 'IW% I1 S (66)

to express Eq (6S) in terms of a dispersion relation which is identical to that

of the weak cold beam-plasma instability 71t
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with K =s±/CWjo/2.o)l/. As is well known, the maximum growth rate inEq (67)

occurs for KjRO, and has growing roots given by z,= exp (i2i/3) for ru and

and z.-exp(ii/3) for r--Wb. This implies that the maximum growth rate of the

instability is

and corresponds to two growing sidebands

(69)

centered around the main carrier mode ko , and each having a spectral width

(70)

Using the self-consistent values for W and W given in Eqs (62) and (63),b
yields the parametric dependence of the growth rate y from Eq (68), namely

I %
(71
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This result shows that the sideband instability driven by the charge clumps

associated with the dynamic B(K equilibrium disappears asymptotically as r/i*o.

For finite values of F/ , two growing sidebands appear at the bounce wavenumber

(k b ) ±=k °0 (2os/ I' ) ].

The existence of these two unstable sidebands is illustrated in Fig 18, which

is obtained by the exact nuuiierical soluation of the dispersion relation, Eq (60),

for the parameters 1'=0.02, I =lf.,o=1.Thf locution of the sidebands coincides

with thb prediction (kb).=(1.3)ko, (kb)_=(O. 7 )ko. However, the maximum growth

rate obtained (A.25) is slightly smaller than that predicted by Eq (68) (i.e.,

",0.31). The difference can be traced to the fact that the term 21WI=0.4, hence

it is not begligible in the left side of Eq (60), as is assumed in generating

Eq (%8), which is strictly correct in the limit IWj-.O.

I.. _ _ _
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VII. Conclusions

This study has demonstrated that the phnomenon of beam clamping, predicted

by the spatially averaged formalism, indeed occurs when the exact microscopic

dynamics of the beam particles are calculated self-consistently. The clamping

in beam energy produces an unbounded increase in wave amplitude. Therefore, the

spatial structure associated with beam clamping (and averaged out in the previous

formalism) corresponds to trapped particles which are strongly focused in space

due to the large growing potential wells. This process can have practical applica-

tions in the areas of efficiency enhancement of travelling wave tube devices and

future free electron lasers.

The limits on the amplitude of the DC fields which can be applied before run-

away behavior sets in have been found. A useful insensitivity of the wave ampli-

tude enhancement on the time of application of the DC field has been demonstrated.

In the presence of wave dissipation a new nonlinear state has been found

analytically, and is observed to be approached in the time asymptotic limit by

the numerical solutions of the problem. This state is a dynamic BKG equilibrium

consisting of a singular charge clump which propagates through the medium at

constant speed even though a DC electric field acts on it. The clump plays the

role of an intermediate agent which transfers the external push to the sources

responsible for the wave dissipation.

The dynamic BGK equilibrium found in this work provides the ideal analytical

model to investigate the sideband instability triggered by trapped clumps, i.e.,

all its parameters are known analytically and it can be generated dynamically.

The growth rate for this instability has been found.

In summary, a variety of interesting effects have been shown to arise when

a DC electric field is applied to a system containing trapped particles. Many
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of these effects appear to be readily amble to experimental observation, and

some may find a practical application.
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Fige Cptions

Fig. 1: Spatial Dependence of the effective trapping well in the presence of a

DC field for the cases E /A-0, 0.2, 0.5, 0.9.
0

Fig. 2: Secular growth of wave amptitude produced by a DC field Eo=O.S5E T . The

E oO curve is the saturated beam instability in the absence of the DC
0

field. The dashed curve is the approximate prediction based on con-

servation of momentum alone.

Fig. 3: Phase-space at T-35.0 for a) EO=O.SET and b) E0 O. The solid curves

represent the instantaneous spatial dependence of the wave force.

Fig. 4: Spatially averaged velocity distribution function in the clamped stage

( =40.0) for Eo=O.5 ET. Note the appearance of a small secondary

runaway component.

Fig. S: Enhanced wave damping produced by a decelerating electric field.

a) Time evolution of wave amplitude for Eo-O and Eo--O.SET . b)

Phase-space at 7-35.0 for Eo-,O.S E T .

Fig. 6: Runaway beam regime. a) Time evolution of wave amplitude for

EosO and Eo=4.OET . b) Phase-space atT '35.0.
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Fig. 7: Dependence of secular growth of wave amplitude on turn-on time

of DC field. Inset shows turn-on time relative to E 0 evolution.

Labels on secularly growing curves correspond to inset timing marks.

Fig. 8: Dependence of secondary runaway production on strength of DC field.

Fig. 9: External control of wave amplitude by two square-wave pulses of

opposite polarity, Eo±O.SET .

Fig. 10: Effect of lower sidebands (k<k ) for EoO. a) Time evolution of

wave amplitude for 7 modes, Ak/kO0.07. b) Phase-space at

T=28.0.

Fig. 11: Induced secular growth in the presence of lower sidebands (k4co)

0

for EoO.5ET. a) Time evolution of wave amplitude for 7 modes,

Ak/ko=0.07. b) Phase-space at-=26.0. To be compared with Fig. 10.

Fig. 12: Effect of lower (k<k0) and upper (k>k0 ) sidebands for EOO.

a) Time evolution of wave amplitudes for 5 modes (two upper

and two lower sidebands), Ak/ko.0.08. b) Phase-space atT -26.0.

Fig. 13: Induced secular growth in the presence of lower (k<ko) and upper

(k>k ) sidebands for E-0O.7ET. a) Time evolution of wave

amplitudes for S modes (two upper and two lower sidebands),

Ak/k o0.08. b) Phase-space at r-0.02. To be compared with

Fig. 12.
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Fig. 14: Time asymptotic approach to a dynamic BGK equilibrium in the presence

of dissipation, Eo=O. 7ET, r-0.02. a) Time evolution of wave amplitude.

Theoretical prediction of steady state amplitude is A-4.2. b) Phase-

space at TU26.O.

Fig. 15: DC field reversal of the destruction of trapping oscillations caused

by finite dissipation. r=O.075, EoeO.SET . Sudden destruction occurs

at wI18.0, E0 is applied at t=28.0.

Fig. 16: Phase-space structures for a finite damping case r=0.075 a) Subsequent

to sudden damping, T-22.0, EO. b) After DC electric field is applied,

E=O. SET, T=49.0.

Fig. 17: Time asymptotic approach to dynamic BGK equilibrium in the presence

of lower sidebands (k<ko), EoO0.07ET, r.O.02. a) Time evolution

of wave amplitudes for 7 modes, Ak/k 0O.07. b) Phase-space at

S=36.0.

Fig. 18: Scaled growth rate Y and frequency shift YR for unstable sidebands

triggered by dynamic BGK equilibrium defined by Eo=l.OET , r-O.02, a=l.O.

t.
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